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Abstract

Understanding the dynamics of electron or nuclear spins during a magnetic reso-
nance experiment requires to solve the Schrodinger equation for the spin system
considering all contributions to the Hamiltonian from interactions of the spins
with each other and their surroundings. In general, this is a difficult task as these
interaction terms can be both time-dependent and might not commute with each
other. A powerful tool to analytically approximate the time evolution is average
Hamiltonian theory, in which a time-independent effective Hamiltonian is taking
the place of the time-dependent Hamiltonian. The effective Hamiltonian is sub-
jected to the Magnus expansion, allowing to calculate the effective Hamiltonian
to a certain order. The goal of this paper is to introduce average Hamiltonian
theory in a rigorous but educational manner. The application to two composite
pulses in NMR spectroscopy is used to demonstrate important aspects of average

Hamiltonian theory.
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1 | INTRODUCTION

The dynamics of electron and nuclear spins is utilized in
the wide area of magnetic resonance-based techniques,
including spectroscopy, imaging and microscopy, such as
electron paramagnetic resonance (EPR),' nuclear magnetic
resonance (NMR),z’3 nuclear quadrupole resonance (NQR)4
spectroscopy, magnetic resonance imaging (MRI)’, and
magnetic resonance force microscopy (MRFM).® However,
the dynamics of the electron and nuclear spins is governed
by their complex interactions with other spins and with
their surroundings, including external magnetic fields, both
static and oscillating. Furthermore, predicting the dynamics
in most but the simplest cases, requires the use of quantum
mechanics, specifically solving the Schrodinger equation for
the spin system considering all the contributions of the
internal and external interactions to the Hamiltonian. This
can be a difficult task especially if the Hamiltonian is time-
dependent and the spin interaction terms do not commute,
a case in which one needs to either resort to numerical

average Hamiltonian, average Hamiltonian theory, composite pulse, effective Hamiltonian, Magnus

simulations or analytically approximate the spin dynamics to
a certain degree or order. The goal of this educational paper
is to introduce in a comprehensive and rigorous manner one
such powerful analytical approach, average Hamiltonian
theory,2’7'10 in which the time-dependent Hamiltonian of the
spin system is replaced with a time-independent effective
Hamiltonian over a certain time interval, which on its part
can be analytically approximated through a series expansion,
called Magnus expansion'' to a certain order in the original
Hamiltonian. The beauty of average Hamiltonian theory is
that if truncated at any order of the Magnus expansion we
are left with a “regular”, ie, Hermitian, Hamiltonian that can
readily provide physical insight into the underlying spin
dynamics.

The time dependence of the spin Hamiltonian stems
from two sources: Firstly, the internal spin interactions are
modulated by the motions of the molecules holding the
spin systems. These motions can be stochastic as the tum-
bling of the molecules in solution or deterministic as the
rotation of the sample in a magic-angle spinning solid-state
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NMR experiment. Secondly, nuclear and electron spins
may be manipulated effectively by pulses of external oscil-
lating magnetic fields, referred to as radio-frequency (rf) or
microwave pulses in case of nuclear and electron spins,
respectively. Especially in case of NMR, we are fortunate
that the applied rf pulses are able to largely dominate the
internal spin interactions, a situation unique compared to
other types of spectroscopy. This has enabled the develop-
ment of an enormous amount of rf pulse sequences not
only to directly excite single and multiple quantum coher-
ences, perform spin echoes and achieve population inver-
sion,'*'* but also to selectively average or decouple certain
spin interactions during parts of the NMR experi-
ment.>* %1% 1% Iy magic-angle-spinning solid-state NMR,
the averaging of the internal spin interactions by the sam-
ple rotation may be suspended over limited time intervals
by applying 1f pulse sequences that are synchronized with
the rotation of the sample. These rf schemes are said to re-
couple certain spin interactions. An almost countless num-
ber of such decoupling and recoupling pulse sequences
have been designed during the last 50 years for the appli-
cation in solution and solid-state NMR spectroscopy often
with the crucial help of average Hamiltonian theory.'*!>!”
This paper is based on educational lectures on average
Hamiltonian theory presented at different NMR conferences
and solid-state NMR summerschools. It starts with recapitulat-
ing some fundamentals of quantum mechanics in Section 2,
before introducing average Hamiltonian theory in a general,
comprehensive and rigorous manner in Section 3. Finally,
part I of this “Introduction to Average Hamiltonian Theory”
finishes with the application of average Hamiltonian theory to
analytically analyze two composite pulses in Section 4.

2 | FUNDAMENTALS OF QUANTUM
MECHANICS

2.1 | Hamiltonian and Schrodiger equation

In quantum mechanics, the state of a physical system at a
time point ¢ is represented by its state vector |(¢)) in a
complex vector space known as Hilbert space or state
space.'®?° Every measurable physical quantity (observable)
is described by a Hermitian operator in the state space. The
only possible result of the measurement of a physical quan-
tity is one of the eigenvalues (real numbers) of the corre-
sponding Hermitian operator. The time evolution of the
quantum state |[y(z)) is governed by the time-dependent
Schrodinger equation

d .
4 V@) = —iHON(), ey

where H(f) is the Hermitian operator, called the Hamilto-
nian, associated with the total energy of the system, here

expressed as an angular frequency, ie, the eigenvalues of
H(f) multiplied by Planck’s constant % give the energy
levels in Joules (J). As a consequence, in the following, the
eigenvalues of all spin angular momentum operators I, I,,
and 7, will be dimensionless.

During an NMR experiment, the macroscopic sample is,
in principle, described by a state function, which includes
the information about all the electrons and nuclei in the
sample. In practice, the time scale of the electron dynamics
is usually much shorter than that of the nuclear spin
dynamics, which might therefore be described by a state
function for the nuclear spin system and a Hamiltonian
which only includes terms dependent upon the nuclear
spins. This is called the spin Hamiltonian hypothesis.> In
general, nuclear spins interact with magnetic and electric
fields stemming from within the sample or from external
sources. The contributions to the nuclear spin Hamiltonian
relevant for NMR experiments are in detail presented in
Refs., 21-24 including the interaction with the external sta-
tic and oscillating rf fields, and internal spin interactions,
such as the chemical shift, quadrupolar coupling, direct
dipole coupling, and J-coupling.

2.2 | Time evolution and propagators

If the initial state [\s(z,)) of a spin system at time point 7, is
known, the state [\J(,)) at a later time point f;, > 7, with
T =1, — t, is determined by solving the Schrodinger equa-
tion (Equation 1). The propagator or evolution operator
U(ty, t,) is defined as the unitary operator which transforms
the spin state \s(7,)) into the spin state [\(z;)):

N/(tb» = U(tb7ta)‘\l/(ta)>7 (2)
where
U Nty 1) = Ul(ty, 1) = Ulta, 1), (3)

The propagation in time is depicted in Figure 1. It is
important to note that as a consequence of Equation 2 propa-
gators accumulate from right to left for subsequent time inter-
vals. Take a time point 7. with ¢, < 7. < t,, it then follows

Ulty,t,) = Ulty, 1)Ut 1,). 4

The propagator U(, t,) solves the differential equation

d .
S U(t1) = —H(OU(1,) (5)
Uty t,) = 1,

which may be obtained by substituting Equation 2 into the
Schrodinger equation. Equation 5 is also referred to as the
Schrodinger equation for the propagator U(t, f,). It may
also be written as an integral equation that takes the form:
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FIGURE 1 Evolution over the time interval [z, ,]: A, The
propagator U(t), t,) is defined as unitary operator that transforms the
spin state [(z,)) and the density matrix p(f,) at time point #, into the
spin state [(#,)) and the density matrix p(z,) at time point #,. B, The
time-independent effective Hamiltonian H is defined such that
U(ty, t,) = exp{—iHT}

1

U(t,t,) =1— i/dtH(t)U(t, ty). (6)

Iy

Figure 2 shows schematically the different cases that
have to be considered when solving Equation 5 to deter-
mine the propagator U(t,, t,) over the time interval [z, f,].
They are discussed in the following:

i H is time-independent:
Equation (5) can easily be integrated and the propagator
be obtained:

U(ty, 1) = exp{—iHT?}. ©)

ii [H(), H(t")] = 0 for all time points ¢, < ¢, 1" < t;,:
The Hamiltonian commutes at all time points in the
interval [¢,, #,,]. This case is called inhomogeneous in the
sense of Maricq and Waugh.”> The propagator can also
be derived for this case:

tp

Ul(ty,t,) = exp —i/dt’H(t’) : 8)

tq

iii [H(¢), H(t")] # 0 for at least one pair of time points
L, <t "<t
The Hamiltonian does not commute at all time points in
the interval [z, t,]. This case is called homogeneous in
the sense of Maricq and Waugh.25 The propagator can-
not, in general, be derived analytically in this case. An
approximate solution can, however, be determined by
different approaches:

)
Hi=H =\ ol
Ult,,t )=e —1HT
time independent Y_GT/ (2, ,)=expl !

| |

dynamically
inhomogeneous

2
[H ("), H(t'")]=0 Y ) Ult,.1,)=exp
for all _‘/

e[, ]

dynamically
homogeneous

[—itfbdtH(t)}v

a

t!

in general
no analytical solution

|
~ N~ i}

numerical Floquet average Hamiltonian
simulations theory theory

Ult,,t,)=exp(—iH T}

=
<
:_,Q
EE N
EE N
EEE

H=AY+g?4

FIGURE 2 Flowchart of the different cases that can be
encountered when trying to solve the differential equation (Equation 5)
to determine the propagator U(#,, t,) over the time interval [#,, #,]

(@) In numerical simulations, the time interval [z,, 2]
is divided into a large number of small intervals
during which H(f) is considered piecewise time-
independent. Consider a division of [z,, #,] into n
small intervals of length t, with k=0, 1, ...,
n — 1. The propagator in this case is given by

U(lb7 la) = exp{—iHn,lrn,l}. ..

exp{—iHyT}. ..exp{—iHoTo}, ©)

where H) denotes the time-independent Hamilto-
nian operative in the kth time interval. In the case
that H(f) is not piecewise time-independent, Equa-
tion 9 can be considered to be a good approxima-
tion if n is sufficiently large. Numerical
simulations based on this approach have in detail
been discussed by Edén*®?® in this journal.

(b) In Floquet theory, the time-dependent state-space
Hamiltonian H(¢) is expanded into a Fourier ser-
ies.?>** The time-independent Fourier components
become the elements in a much larger time-
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independent Floquet-space  Hamiltonian. The
expansion of the time-dependent state-space
Hamiltonian into the time-independent Floquet-
space Hamiltonian is an exact transformation.
However, as a result, even in the case of a finite-
dimensional state space, the Floquet space
becomes infinite-dimensional. Therefore, solving
the Schrodinger equation in Floquet space requires
to approximate the infinite-dimensional Floquet
Hamiltonian with an approximate finite-dimen-
sional Floquet Hamiltonian containing the signifi-
cant Floquet components. Despite these
difficulties, Floquet theory has been used exten-
sively to analyze rf pulse sequences in magic-
angle-spinning solid-state NMR.>*=*°

(¢) In average, Hamiltonian theory the propagator U
(tp, t,) is written as an exponential of the form
exp{—iHT}, where H is the time-independent and
Hermitian effective or average Hamiltonian. In a
following step, H may be expanded in a series
expansion, called the Magnus expansion,“ where
each term in the expansion is Hermitian. One great
advantage of the Magnus expansion is that it pro-
vides physical insight into the evolution of the
quantum system under the propagator U(t,, t,).
Therefore, average Hamiltonian theory has been
very successful in the design of rf pulse sequences
both in liquid- and solid-state NMR. In Section 3,
average Hamiltonian theory is introduced rigor-
ously. In Section 4, its application to the design
and understanding of two composite pulses in
NMR is demonstrated.

2.3 | Density operator

Consider an NMR sample containing an ensemble of spin
systems, isolated from each other. It is not practical to
describe the complete spin-system ensemble by a single
state function. Instead, the spin-system ensemble is com-
pletely described by the density operator

p(1) = N ) (W) = D el ) (e (0)], (10)
k

where p, is the probability that an individual spin system is
in the spin state [ ().

The time evolution of the density operator p(f) is gov-
erned by the Liouville-von Neumann equation

Sp(e) = il (), p(0)]. (an
If the initial density operator p(z,) of the spin-ensemble

at time point 7, is known, the density operator p(¢) at a
later time point ¢ > ¢, is obtained by

p(t) = U(t, t)p(1)U (1, 1), (12)

where the propagator U(t, t,) solves Equation 5. Taking the
time derivative of Equation 12 and employing the
Schrodinger equation (Equation 5) for the propagator result
in the Liouville-von Neumann equation (Equation 11),
which is therefore equivalent to the Schrodinger equation.
It should be noted how the propagator U(¢, t,) ‘“‘sand-
wiches” the density operator in Equation 12.

2.4 | Rotation operators and radiofrequency
pulses

Nuclear spins may be affected by two different types of
rotation in the course of an NMR experiment: (i) spatial
rotations, such as the tumbling of molecules in solution or
the rotation of the sample as in a magic-angle spinning
experiment. (ii) spin rotations caused by rf pulses or spin
interactions such as the chemical shift. These two types of
rotations are illustrated in Figure 3. It is important to note
that these two types of rotations are independent from each
other, ie, a rotation of the molecule does not rotate the
nuclear spin orientations.

The operators for a rotation of spins I through the angle
B about the x-, y-, and z-axis are defined as

R(B) = exp{—ipL:} (13)
Ry(B) = exp{—ipl;} (14)
R(B) = exp{—ipL}. (15)

The corresponding rotations are depicted in Fig-
ure 4A. As mentioned above, spin rotations can be gen-
erated by rf pulses. The Hamiltonian of the interaction
of a system of single I-spins with an on-resonance rf
field in the high-field approximation and in the rotating
frame® is given by

Hy(t) = oqu(Ixcos ¢ + I, sin d)

16
= mnutRz(d))IxRZ(_d)) ( )

spatial
rotation

spin
rotation

FIGURE 3 Illustration of how spatial and spin rotations affect a
two spin-1/2 system represented by blue arrows in a molecule
depicted as gray ellipsoid
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=exp{—if /]

=exp|~if,)

(B)

FIGURE 4 A, The rotation operators R,(B), R,(B) and R.(B)
produce spin rotations around the x-, y-, and z-axis, respectively. B,
An on-resonance 1f pulse By with nutation frequency o, generates a
rotation of the nuclear spins by the flip angle B about an axis that lies
in the xy-plane and encloses the phase angle ¢ with the positive x-
axis. C, The same rf pulse applied with an rf frequency offset A,
results in a rotation with the effective field e = (o)ﬁm + A2)l/ 2
about an axis that encloses the angle 6 = arctan (w,,/A) with the
positive z-axis

where ¢ is the rf phase and o, is the nutation frequency
of the rf field. In the NMR literature, the symbol ®; often
is used for the nutation frequency, however here we follow
Ref. 3 and use . If the rf field is applied for a duration
T, the resulting rf pulse, denoted Bq» rotates the nuclear
magnetic moments by the flip angle B with

B = Onut T, a7n

about a rotation axis that lies in the xy-plane and encloses
the phase angle ¢ with the positive x-axis as shown in Fig-
ure 4B. The angles B and ¢ are typically given in degrees
when sequences of pulses are specified and given in radi-
ans during calculations. Alternatively, we use ¢ = x, y if
the rotation axis is identical to the positive x- or y-axis,
respectively.

If o, and ¢ are time-independent and the rf pulse
starts at time point #,, the propagator during the rf pulse at
a time point #, < t < t, + T is given by:

Usi(t,1,) = exp{ —ion(f — ) (lccosd + Lysind)}  (18)

= R.($)Re(0nut(t — 12) )R (— ), (19)
and the propagator over the complete 1f pulse is given by:
Ust(ta +7,ta) = R(O)R(B)R.(— ). (20)

If the rf field is applied with a frequency offset A, the
spin Hamiltonian of the interaction with the rf field is
given by Equation 16 completed by the resonance offset
term:

H?f(’) = 0)nut(]x cos ¢ + [y sin (I)) + AL

21
= (DnutRz(d))Isz(_d)) + AIZ

In order to make this more illustrative, we can define an
effective field as shown in Figure 4C with the effective
nutation frequency w.g and the angle 6 by which the rota-
tion axis is rotated away from the positive z-axis:

Wetr = 1/ 02 + A’ (22)

0 = arctan(@uu /A). (23)

As a result, the Hamiltonian of the rf field in the presence
of an rf frequency offset Equation 21 can be written as:

HA (1) = oerr (I sin 0 cos ¢ + I, sin O sin ¢ + I, cos 0)
= 0efR:($) Ry (0) LRy (—O)R;(— ) 24)
= OeffIl + Ia

where n-I is the scalar product of the normalized polar
direction vector n = (sin 0 cos ¢, sin 0 sin ¢, cos 0) and
the spin operator vector I = (I, I, I,).

If @y, ¢ and A are time-independent and the off-reso-
nance 1f pulse with duration t starts at time point #,, the
propagator during the off-resonance 1f pulse at a time point
t, <t<t,+ 1is given by:

UL (t,1,) = exp{—ioer (t — t,)n - I}
Rz(d’)Ry(e)Rz (meff(t - ta))Ry(_e)Rz(_d))a
(25)

and the propagator over the complete off-resonance rf pulse
is given by:
Uty 4+ 1,1,) = exp{—iPyn - I}
— RAS)R (O)R. (Bt R (~O)R.(— ),

where Beg is the effective flip angle of the pulse around
the direction n of the effective field,

(26)

At
Betr = 0effT = —— (27)

" sin®  cosf’
where the alternative expressions in Equation 27 allow us to
easily identify the two limiting cases: (i) 8 = 7/2, resulting in
Bett = B, hence for an on-resonance pulse (A = 0) the
expected flip angle B is obtained. (ii) 6 = 0, resulting in
Betsr = At, hence for the case where the nutation frequency of
the rf field is zero (., = 0), the evolution corresponds to the
spin precession by the angle At due to the resonance offset.

3 | AVERAGE HAMILTONIAN
THEORY

After being briefly introduced in Section 2.2, here average
Hamiltonian theory is presented more rigorously.
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3.1 | Effective Hamiltonian and Magnus
expansion

Consider again the evolution of the spin system over the time
interval [¢,, #,] with T = t, — t, by the propagator U(t,, t,) as
introduced in Section 2.2 and depicted in Figure 1. The propa-
gator is a solution to Equation 5, governed by the time-depen-
dent Hamiltonian H(?). It is both useful and insightful to define
a time-independent effective or average Hamiltonian H through

Ul(ty,t,) = exp{—iHT}, (28)

analog to the case of Equation 7, in which the Hamilto-
nian H is time-independent over the interval [z, 1,].

The effective Hamiltonian may be expanded in a series
expansion, called the Magnus expansion:'’

H=HY + A + A® 4+ g® + (29)

where the term H is referred to as the nth order average
Hamiltonian. If the expansion is terminated at the nth
order, the effective Hamiltonian H in Equation 29 and the
resulting propagator in Equation 28 are said to have been
calculated in nth order average Hamiltonian theory. The
first four orders of the Magnus expansion are given by

Iy

A = % / drH (1) (30)

tq

=57 dt/dt’[H(t),H(t’)} €1))

{ ty t v
H®) = ——/dz/dz’/dz”{[Ht
6T
Iy Iy Iy

[ 100 )|

HY = dr [ df [ d" | df”
. / / /

xﬂmemﬂwpwﬂ

(32)

+ H(t), [[H(t/)aH(IH)LH(t/N): | (33)

+ | HQ), [H(), [H(t”),H(t”’)]:_

+Mmhwwwmmﬂ}

It should be noted that the indexing of the Magnus
expansion is equal to the order to which the Hamiltonian

H(?) appears in the respective expression. Hence, the index-
ing starts with one, whereas older literature on average
Hamiltonian theory uses indices that are one less than those
given here.”® The fourth order expression given above is
based on those published by Wilcox,?' Bialynicki-Birula
et al’® and later by Klarsfeld and Oteo.”> An important
property of the Magnus expansion is that each term H™ in
the expansion is Hermitian, resulting also in a Hermitian
effective Hamiltonian in any order of truncation. This
ensures that the propagator is indeed unitary in any order
of average Hamiltonian theory. Furthermore, since the
effective Hamiltonian A and the propagator U(t, t,) are
time-independent, they enable an illustrative interpretation
of the average quantum dynamics under the time-depen-
dent Hamiltonian H(f) during the time interval [t,, f,].
However, the effective Hamiltonian does not allow to pre-
dict the exact dynamics of the spin system during the time
interval [1,, 1].

The Magnus expansion converges rapidly if, for any
time ¢, < t < 1, the condition

|HH)|T < 1 (34)

is fulfilled, where the norm, ||H(f)||, might, for example, be
chosen to be

IH(0)| = (Te{H(2)*}) ">, (35)

The condition in Equation 34 is very conservative and
is not necessary fulfilled in many practical applications of
the Magnus expansion.

From Equations 30-33, the following four special cases
can be readily identified:

i [H({), H(")] = 0 for all time points ¢, < 7, " < 1,
This inhomogeneous case has been discussed before,
see Equation 8. As the Hamiltonian commutes at all
time points in the interval [¢,, #,], all average Hamilto-
nian terms with order higher than one are equal to zero:

H™ =0  for alln> 1, (36)

and as a result, the exact effective Hamiltonian is given
by the first order average Hamiltonian:

H=HY. 37

ii H(¢) is symmetric:
If Ht, + t)= H{t, — 1) for any 0 <t < (8, — t,), H(?)
is referred to as being symmetric in time over the time
interval [7,, #,]. In this case, all even order average
Hamiltonian terms are equal to zero, as shown first by
Mansfield:**
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H™ =0  forall even n 38 (A)
ven n, G8) H, H,
, | | >
leading to f— T, ——rm, vt
H=HY +H® + BO) ¢ (39) L, Ly
This is an important property and tool in the design of (B)
multiple pulse sequences, where often a particular first A T, T,
order average Hamiltonian is desired, whereas higher
orders ideally should disappear, especially in the pres-
ence of errors in the pulse sequence or large disruptive -
spin interactions, such as rf frequency offsets or chemi- ?
cal shift anisotropies.®>*%
N
iii H(f) is antisymmetric: T, T Ty
If Ht,+1tv)=—H(, — 1) for any 0 <t <(t, — 1),
H(?) is referred to as being antisymmetric in time over > 7'
the time interval [z,, t,]. This case results in all orders
of average Hamiltonian terms disappearing:** © 1 1
2 2
— —T,T —T,T
A™ =0  forall n, (40) 2 2! 2 2!
which leads to t A T, T,
Tl TZ
=0 (41)
(tb,tu) 1, (42) .
ie, the propagator is identical to unity, hence the spin T,
system at time point #, has returned to its initial state at ’/
time point f,. Although this might look trivial, NMR ,
techniques exploiting this characteristic, such as spin ; t
echoes®® and rotational echoes® are highly important T :
over a wide range of applications.
iv H(f) is piecewise time-independent: The last case we '’

would like to consider in this list is that of a Hamiltonian
H(f), which is piecewise time-independent over the inter-
val [t,, t,]. Consider the division of [¢,, ] into N sub-
intervals [#, t;,1] with durations T, = f;,; — #, so that

for #<t<ty;; and k=1,... ,N, (43)

where t; = t, and ty,.; = ;. In this case, the first two
orders of the Magnus expansion in general are given by

_ 1 &

Y —_N"H 44
T; ka ( )

) | Nkl

H<2) — _Z [Hk,H[] TkTy. (45)
2T = 1=

The third order is more complicated to write out in gen-
eral. Therefore, we consider the simple case of two sub-
intervals of [z,, #,,] over which H(¢) is piecewise time-inde-
pendent. This is depicted in Figure 5. In this case, the first
three orders of the Magnus expansion simplify to

FIGURE 5 Integration intervals, areas and volumes in A, first,
B, second, and C, third order average Hamiltonian theory of a
Hamiltonian that is piecewise time-independent

_ 1

HY = ?{Hl’tl +H2‘E2} (46)

_ 1

H(z) 2 T [Hz,Hl]Tz‘Cl (47)

_ 1

3

H( ) — 12T { [HZ, [Hz,HIH’Cle

i) mled) G

where the integration intervals, areas and volumes for
each order are shown in Figure 5, respectively. Since the
Hamiltonian is piecewise time-independent solely, pair-
wise different blocks have to be considered in the commu-
tators in Equations 31 and 32. Hence, solely the integral
over the area of size t,7; highlighted in green in
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Figure 5B contributes to H® in Equation 31 resulting in
Equation 47. Similarly, solely the integrals over the two
volumes of sizes 177 /2 and 737, /2 shown in yellow and
green in Figure 5C, respectively, contribute to H®®) in
Equation 32 leading to the result in Equation 48.

3.2 | Interaction frame

As discussed in Section 3.1, the Magnus expansion Equa-
tion 29 of the effective Hamiltonian over the time interval
[t., t,] only converges if the norm of the Hamiltonian H(¢)
is small, see the convergence condition Equation 34. How-
ever, the convergence of the Magnus expansion may be
improved drastically by transforming the Hamiltonian H(¢)
into a suitable interaction frame, often referred to as inter-
action picture or interaction representation in textbooks on
quantum mechanics.'®*® Consider the case where the
Hamiltonian may be expressed as a sum of two terms

H(t) = H(t) + Hp(1), (49)

where both parts may be time-dependent and might not
commute in general. Here, H,(f) is the larger part and
should be chosen in such a way that the propagator Ujy(t,
t,), solving the equation

%UA(I7 ty) = —iHA(0)Ua(2,1,) (50)

UA(tmta) = 17 (51)

can easily be determined analytically. It proves to be a

useful ansatz to express U(t, t,) as the product of Uy(z,

t,) and the so-called interaction frame propagator
1,1,): ~

Ule, 1) Ut 1) = Us(t,1,)U(1,1,). (52)
Inserting this ansatz into Equation 5 leads to

—U(t,t)) =
& (t,ta)

—i (Uf,(t,ta)H(t) U (t,1,) —iU (1,1,) (%UA(ma))) U(1,1,) »

H(r)
(53)
where we have defined the interaction frame Hamiltonian

H(t) such that the interaction frame propagator U(t,t,)
solves the differential equation

%U(t, t.) = —iH()U(t,1,) (54)

The interaction frame Hamiltonian H(z) defined in
Equation 53 may be simplified using Equations 49 and 50
such that one obtains:

H(r) = Hy(t) = Ua(t, 1) Hg (1) Ua (1, 1,). (56)

Note that the propagator Uy(t, t,), which depends upon
two time points, is used as the transformation operator,
which strictly spoken should only depend upon the time
point 137

If we consider again the scenario depicted in Figure 1
and described in Section 3.1, ie, the evolution of the spin
system over the time interval [¢,, #,] with T =, — ¢, under
the Hamiltonian shown in Equation 49, the propagator
U(t, t,) may therefore be written as:

Uty ta) = Ua(ty, 1) Ul(ty, 1), (57)

where the interaction frame propagator U (t,1,) may be
expressed in terms of an effective interaction frame Hamil-
tonian Hp analogous to Equation 28 and analyzed by the
Magnus expansion Equation 29:

U(ty, t,) = exp{—iHpT} (58)
Hy=HY +HY +HY +HY +... (59

The individual orders of the Magnus expansion are
given by Equations 30-33, where the Hamiltonian H(f) has
to be replaced by the interaction frame Hamitlonian
H(r) = Hp(¢).

In practice, the choice of the interaction frame
depends on the particular Hamiltonian relevant to the
problem under study. For example, in NMR spec-
troscopy, the dominating term in the spin Hamiltonian is
the Zeeman interaction of the spins with the external sta-
tic magnetic field. The interaction frame of the Zeeman
interaction is referred to as the rotating frame and the
spin Hamiltonian commonly used in NMR spectroscopy
corresponds to the first, and sometimes second, order
average Hamiltonian in the rotating frame of the Zeeman
interaction.>>**%3° Once the NMR Hamiltonian is pre-
sented in the rotating frame, other interactions become
suitable choices for a further interaction frame transfor-
mation.

A common choice in the application of average Hamil-
tonian theory to the design of rf pulse sequences is to
transform the rotating frame spin Hamiltonian into the
interaction frame of the rf field, also commonly referred to
as the roggling frame.® Another possible choice is the inter-
action frame of a dominating internal spin interaction in
the rotating frame such as the chemical shift anisotropy or
the quadrupolar coupling, sometimes referred to as the jolt-
ing frame.*® However, rather than using the terms “tog-
gling frame” and “jolting frame”, I would for clarity
instead recommend using the term “interaction frame
of...”.
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3.3 | Periodic Hamiltonian

Many interactions of the nuclear spins within the spin sys-
tem and with external magnetic fields are periodic in time,
modulated for example by periodic sequences of rf pulses
or by the rotation of the sample in magic-angle spinning
experiments. In this section, we would like to extend aver-
age Hamiltonian theory to the case of periodic spin Hamil-
tonians H(?):

H(r + NT) = H(1). (60)

where T is the period of the Hamiltonian and N is any
integer. This case is shown schematically in Figure 6. It
is particularly useful to choose one period as the inter-
val [t,, 1,] with T =1, —t, over which the effective
Hamiltonian H should be determined according to Equa-
tion 28. This enables us to reuse the effective Hamilto-
nian to propagate the spin system over integer multiplies
of T:

Uty +T,t,) = U(ty,t,) = exp{—iHT} (61)
U(t, + NT,1t,) = exp{—iHNT} (62)

The effective Hamiltonian H over one period T may
now be analyzed by the Magnus expansion Equation 29 as
described in detail in Section 3.1.

Perhaps more interesting is the case where we would
like to transform a periodic Hamiltonian into the interaction
frame of a dominant term in the Hamiltonian. Analogous
to the case discussed in the previous Section 3.2, the peri-
odic Hamiltonian H(7) is expressed as sum of two terms

H(t) = Hy (1) + Hip(1)

periodic (63)
Hg(t+NT)=Hpg(1)

periodic
Ha(t+NT)=Hu(t)
where we have indicated that both terms H,(f) and Hp(t)
need to be periodic with the same period T as H(?) itself.
This ensures that also the interaction frame Hamiltonian
H () = Hp(t) in Equation 56 is periodic:

Hp(t) = Ua(t,1,) Hy (1) Ua(t, 1) (64)
Hg(t + NT) = Hp(1) (65)

The resulting total propagator over a single period T
may be calculated according to Equation 57:

Uty + T, ty) = Us(ta + T, 1)U (t, + T, t,)

= Ux(ty + T,1,) exp{—iHpT}. (66)

Similar as in Equation 62, we may reuse the effective
Hamiltonian to determine the propagator at multiples of T

U(t,+NT,t,)=exp(—iHNT)

FIGURE 6 Visualization of a Hamiltonian H(Z) that is periodic
in time with period T. If the effective Hamiltonian H is determined
over one period 7, it is straightforward to obtain the propagator over
time intervals that are integer multiples of 7

U(ta + NT,1,) = (UA(ta +T,1,) exp{—iHBT}>N, 67)
where we note that Ux(t, + T.t,) and exp{—iHzT} do not
necessarily commute, hence this result cannot be further
simplified in general.

However, in most of the literature on average Hamiltonian
theory, another condition is imposed on H,(f), namely that it
needs to be cyclic, ie, its propagator Uy(t,, t,) over the period
T needs to be positive or negative identity, returning the spins
at time point #,, after the evolution time 7, back to its original

state they were in at time point 7,:>"°

Un(ty,1a) = %1 (68)

In this case, Equations 66 and 67 straightforwardly sim-
plify to

Ut, +T,t,) = exp{—iHpT} (69)
U(t, + NT,t,) = exp{—iHpNT}. (70)

3.4 | Average Hamiltonian theory summary
sheet

In Sections 3.1-3.3, we have not only introduced average
Hamiltonian in general but also considered more advanced
topics such as the interaction frame and periodic Hamiltoni-
ans. In light of the significant amount of material, the
reader had to follow up to this point, Figure 7 provides
an overview and summary sheet of average Hamiltonian
theory that is covered in this paper, it is presented as a
flowchart or decision tree: On the top, we start with the
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time-dependent Hamiltonian H(f) of the spin system.
Depending on whether the Hamiltonian is periodic in time
or not, either the left or right route is taken. In the next
step, it is distinguished if the Hamiltonian can be written
as the sum of two terms, H,(f) and Hpg(f), so that a trans-
formation into the interaction frame can be performed
before the Magnus expansion is applied. Hence, in total,
four cases are shown in the overview sheet, where the
last two rows show how the Magnus expansion is per-
formed and the propagator appears. The reader is encour-
aged to consult this overview sheet whenever applying
average Hamiltonian theory in practice and to dive back
into Sections 3.1-3.3 for details.

4 | COMPOSITE PULSES

After having laid the groundwork of average Hamiltonian the-
ory in the previous sections, it is time to step-by-step work
through a couple of examples, for educational purposes in far
more detail than is usually encountered in the NMR literature.
One prominent area in NMR that benefited from the applica-
tion of average Hamiltonian theory in the 1980s was the devel-
opment of so-called composite pulses.'*'* A composite pulse
is a series of rectangular rf pulses that replace a single rectan-
gular rf pulse in a pulse sequence. Under ideal conditions, ie,
the spin system solely experiences the Zeeman interaction and
the interaction with the rf field, the transformation of the spin
system imposed by the composite pulse is identical to the one
imposed by the rectangular pulse it replaces.'*'* However,
composite pulses are commonly designed such that they are
less sensitive to the exact setting of the rf field amplitude and
frequency offset. In this section, we will examine in detail two
seminal composite 180° pulses by average Hamiltonian theory.

4.1 | The composite pulse 90,180,90y

The first composite pulse we will study by average Hamilto-
nian theory is a group of three pulses 90,180,90,, which under
ideal conditions is equivalent to a 180, pulse. It was first con-
structed using geometrical arguments by Levitt and Freeman
as an inversion pulse that is compensated with respects to mis-
setting of the rf amplitude.*' In this section, the consequences
of such an rf amplitude error on the transformation of the spin
system during the composite pulse will be analyzed by aver-
age Hamiltonian theory and compared with exact calculations
and the performance of a single rf pulse.

The composite pulse 90,180,90, together with its timing
is depicted in Figure 8A. The three consecutive pulses are
labeled D, @, and Q). The starting time point of the
sequence is denoted fy, the time point after the first 90,
pulse D is labeled #,, the time point after the 180, pulse
@® is denoted t,, and the time point after the final 90, pulse

@ is labeled #;. Consequently, the durations of the
individual pulses and the complete composite pulse are
given by 1, =1t —ty, =t —t, T3=13 — t, and
T=1t —t =1 + 15 *+ 13, respectively. The ideal nutation
frequency throughout the composite pulse is constant and
given by o,,. Hence, the following relationships are ful-
filled for the flip angles and durations of the pulses:

T
OnutTr = Oput T3 = E
71
OputT2 = T ( )

('OnutT =2r

The absolute 1f amplitude error is denoted ®., hence the
total rf amplitude during the composite pulse is given by
Onye + ®.. We can also define a relative tf amplitude error
€ as the ratio € = ©J/Opy,.

4.1.1 | Hamiltonian

Consider a system of single I-spins that are subject solely to
the Zeeman interaction and the interaction with the rf field dur-
ing the composite pulse shown in Figure 8 A. The Hamiltonian
at time point ¢ in the high-field approximation and in the rotat-
ing reference frame? is according to Equation 16 given by

H(t) = (0put + ©c) (L cos d(r) + I, sin d(7))
= (Onue + )R (G(1)) LR (= (1))
= OntR:(P(1) LR (— (1)) + OR($(1)) LR (= (1)),
Hy(t) Hp(t)

(72)

where ¢(7) is the rf phase at time point ¢ during the compos-
ite pulse. In the last line of Equation 72, the Hamiltonian has
been written as the sum of two parts H,(f) and Hp(t), where
H(?) corresponds to the Hamiltonian of the interaction with
the ideal rf field and H(?) is the small perturbation Hamilto-
nian of the rf amplitude error. Naturally, as outlined in Sec-
tion 3.2, this offers the opportunity to transform the
Hamiltonian H(?) into the interaction frame of H,(#) before
applying average Hamiltonian theory. As a result, since H()
is non-periodic, this case falls into the second column of Fig-
ure 7. For the different time periods during the composite
pulse, H,(?) and Hp(?) are explicitly given by:

Ha(r) = Onedy  for fp<t<tiorfp, <t<t3 (73)
ol  for H <t<n
and
od, for fH<t<tortp<r<n
Hp(t) = “y - - = 74
5(7) {(»Jx for 1 <t<mt. (74)

4.1.2 | Rf propagator

In order to transform H(¢) in Equation 72 into the interac-
tion frame of H,(f), we need to calculate the rf propagator
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periodic ]

H(t+NT)= ()]

period T=t¢,—t

f
(#(0) ] (H()=H () +H,(0) ] (L # (0)=H (1) H, (1) |
| |

non-periodic ]

[ time-interval T =¢,—¢,

condition [ conditions ] condition [ conditions ]
H(t) small A. U,(t,t,) canbe H(t) small Al. U ,(t,t,) canbe
max || (¢)|T <1 estimated analytically max ||H (¢)|T <1 estimated analytically
1, SIS, atall 7, <t<t, 1, SIS atall £, <t<t,

B. H(t) small A2. H ,(t) periodic,
max ||H,(t)|T<1 H,(t+NT)=H (1)
LSSt Bl. H,(¢)small

max ||H 4(¢)|T<1
t,<t<t,

B2. H,(¢) periodic,
Hy(t+NT)=Hy(t)

[ interaction frame ] [ interaction frame

‘ H,y(6)=U"(t,1,)H (1)U ,(2,1,) H,y(t)=U(t,1,)H (1)U ,(1,1,)

]:IB(t) periodic,
H,(t+N T)=H ,(1)

[ Magnus expansion ] [ Magnus expansion ] [ Magnus expansion ] Magnus expansion ]
7 — gy g2) 7 a0y () — 724 7 = gleg2)
H=H"+H""+... Hy,=Hy . = +H Hp=Hpg +H'+...
t, {4, Z, t,
_ 1 - 1 (1) 1 ~(1) _ 1 ~
A = aH () ay = dH y(0) H fdzH Ay = [ aH (o)
ta t ta ta
7(2) — 7(2) — mr(2) — (2) —
Y= a2 = " = a2 =
[ propagator ] [ propagator ] [ propagator ] [ propagator ]
U(tb ) exp|—iH T} ’ ‘ U(tb,ta)ZUA(tb,ta)exp{—iF]BT} ’ U(tb, t )=exp{—iHT) Ult,,t,)=U [(t,,t,)exp{—i H , T}
U(t,+NT,t,)= U(t,+NT,t,)=
exp{—iHNT| (U (e, t,)exp( =i H ,T]"

[ H ,(t) cyclic: U ,(t,,1,)=%1 ]

Ult,,t,)=exp|—iH,T)

U(t+NT,t,)=exp|—iH,NT|

FIGURE 7 Overview and summary sheet of average Hamiltonian theory
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FIGURE 8 Timing Diagrams of the two composite inversion
pulses discussed in the text using average Hamiltonian theory: A, the
90,180,90, composite pulse, and B, the 90,,90, composite pulse,
where the flip angle B will be optimized such that the resulting
inversion pulse is compensated with respect to rf frequency offsets in
first order average Hamiltonian theory

solving the corresponding Schrodinger equation (Equa-
tion 50). Since the Hamiltonian is piecewise time-indepen-
dent during the composite pulse, this is straightforward:

for tp <t<nh
for 11 <t<th,
for 1, <t <t.

(75)

Ry(mnut(t - to))
R(nu(t = 11))Ry (5)
Ry(0nut(t — 0))R(T)R, (5)

UA(ta tO) =

Note how the propagators accumulate from right to left
in the second and third line, see also Equation 4. In the
next step, we use the time-dependent flip angles

Bo (1) = Onu(t = 10), Bo (1) = Onu(t — 1) and
B (1) = 0nue(t — 12) to simplify the propagator expression:
Ry(Ba(?)) for ty <t <t
U(t,10) = { Re(Ba ()R (5) for <t<t, (76)
Ry(Ba(t) —3)Ri(m) for b <1<m,

where we used in the last line the transformation

T I

R.(T)R, (E) = Ry(T)R, (E)Rx(—n)Rx(n) —R, (— g)Rx(n).
)

Finally, for the transformation into the interaction frame,
we also need to calculate the adjoint of the rf propagator:

for fp<t<nt
for 1y <t<t,
for 1, <t <.

(78)

Ul (t,10) =

4.1.3 | Interaction frame Hamiltonian

With the help of the rf propagators calculated in the previ-
ous section, we can now transform the Hamiltonian H(7)
into the interaction frame of Hu(f) as shown in Equa-
tion 56:

Ry(* %) x(*B(;)(t)

for t, <t<t.
(79)

This can readily simplified since the spin operators and
rotation operators commute in most of the cases:

) HY = o, for 1y <t<1
Hy(1) = § Hy = o, for t; <t<t (80)
Hy = —od, fort<t<t,

where we have introduced the shorthand notation HY, H?
and IEI? for the three time-independent interaction frame
Hamiltonians during blocks D, @, and @ of the compos-
ite pulse. Hence, we note that the final interaction frame
Hamiltonian is piecewise time-independent, a case gener-
ally discussed in Section 3.1.

4.1.4 | First order average Hamiltonian and
propagator

After we have determined the interaction frame Hamilto-
nian in Equation 80, it is now time to calculate the first
order average Hamiltonian according to Equations 30 and
44:

15}

_ 1 ~
A :—/dt H(r)

T
)
1.~ - -
= T{Hg)‘cl + H?Tz + Hg’tg.} (81)
1 1 1
= -0, + -0, — 0,
4 2 4
1
= -0,
2

This is the first order average Hamiltonian in the inter-
action frame of the rf field. Hence, the resulting fotal prop-
agator U(tz, fy) over the whole composite pulse is
according to Equation 57 to first order average Hamilto-
nian theory given by the product of Ux(t3, fy) and the prop-
agator Up(t3, 1) = exp{—iH T}:
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where we used the relative amplitude error € = ®J/®py,
and the relationship ®,, 7 = 2n. The final propagator is a
product of two rotations, first a rotation around the z-axis
by me, which depends on the relative amplitude error,
and second the ideal rotation by m around the x-axis,
which corresponds to a 180, pulse. Hence, under the
90,180,90, composite pulse, inversion of longitudinal
magnetization is compensated for rf amplitude errors in

first order average Hamiltonian theory, whereas transverse
magnetization acquires a phase with value —me in the
xy-plane under inversion.

To illustrate this, Figure 9 shows the results of calculat-
ing the trajectory of three density operators pg = I, I, and
I, corresponding to z-, x-, and y-magnetization, during a
single 180, pulse and during the 90,180,90, composite
pulse in the presence of relative amplitude errors of
€= —-5% (A-C) and —15% (D-F). The density operator
after the propagation under the sequence of pulses is
labeled p;. The graphs were plotted with the help of Mal-
colm H. Levitt’s Mathematica®* package mPackages (ver-
sion 4.30), the predecessor of SpinDynamica.*®

Let’s start by having a closer look at the left panel (A-
C), showing the results for an amplitude error of € = —5%,

/ 180x 90y | 180x |90y \ / 180x

90y | 1805 |90y \

1st order
exact exact average
Hamiltonian

=)

1st order 1st & 2nd order
exact average average
Hamiltonian Hamiltonian

(@ Po=1,

== A

)

FIGURE 9 Trajectories of z-, x-, and y-magnetization vectors during a single 180, pulse and during the 90,180,90, composite pulse in the

presence of relative rf amplitude errors € of —5% and —15%. Details are discussed in the text
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and in particular the first row (A) that shows the trajectory
of a z-magnetization vector (py = I,). Since the rf ampli-
tude is set slightly too small, the z-magnetization is not
completely inverted under a single 180, pulse, as can be
seen on the left. The panel in the middle shows the exact
trajectory the z-magnetization takes during the 90,180,90,
composite pulse, leading to perfect inversion in spite of the
misset of the rf amplitude (p; = —I,). This graph elucidates
the mechanism of compensation for rf amplitude errors:
The first 90, pulse rotates the z-magnetization vector to a
position slightly above the x-axis, since the rf amplitude
error causes the flip angle to be slightly less than 90°. The
following 180, pulse rotates the magnetization slightly
below the xy-plane, however, because of the amplitude
error, the final position is not exactly below the x-axis.
Finally, the last 90, pulse rotates the magnetization vector
to a position that is almost perfectly along the —z-axis, as
its flip angle is again slightly less than 90°.

The trajectory under the propagator in first order average
Hamiltonian theory is shown on the right: it corresponds to a
perfect inversion of the z-magnetization vector. It is impor-
tant to remind the reader that the propagator based on the
average Hamiltonian strictly may be used solely to calculate
the final density operator p, after the pulse sequence, it does
not provide any insight into the actual trajectory of the spin
system during the sequence of pulses, as is evident by com-
paring the exact trajectories with the ones based on average
Hamiltonian theory in Figure 9.

The second row (B) in the left panel of Figure 9 shows
the trajectory of an x-magnetization vector (py = I,). As
expected a single 180, pulse does not result in any rotation,
ie, p1 = po = I, shown on the left. More interesting is the
exact trajectory of the x-magnetization under the
90,180,90, composite pulse. The small rf amplitude error
causes the final magnetization vector to lie in the xy-plane
enclosing a small angle with the x-axis, given by
—me = 9°. The final density operator p; is nicely repro-
duced by the trajectory under the propagator in first order
average Hamiltonian theory, as shown on the right.

Finally, the different trajectories of y-magnetization are
show in row (C) in the left panel of Figure 9. Due to the
small rf amplitude error the single 180, pulse does not
invert the y-magnetization entirely, rather the magnetization
vector stops above, short of the —y-axis. In contrast, after
the 90,180,90, composite pulse, the final magnetization
vector lies in the xy-plane, enclosing the small angle of 9°
as discussed above with the —y-axis. The same final den-
sity operator is reproduced in first order average Hamilto-
nian theory as shown on the right.

So far, the relative amplitude error ¢ has been small
enough, so that first order average Hamiltonian theory
proved to be sufficient for calculating the propagator over

the composite pulse satisfactory when comparing the
results with exact calculations. However, in the following
we want to turn our attention to the results shown in the
right panel (D-F) of Figure 9 for an amplitude error of
€ = —15%, in which case first order average Hamiltonian
theory will be shown to be insufficient.

The first row (D) shows the trajectory of a starting
density operator I, (z-magnetization). The larger rf ampli-
tude misset causes the final position of the magnetization
vector to clearly fall short of the —z-axis for a single
180, pulse. Interestingly, also the 90,180,90, composite
pulse fails to perfectly invert the z-magnetization, how-
ever the resulting error is smaller than in the case of the
single 180, pulse. However, the first order average
Hamiltonian does still cause a perfect inversion of the z-
magnetization. We can conclude that for a relative rf
amplitude error of € = —15% first order average Hamilto-
nian theory is not sufficient to calculate the propagator
under the 90,180,90, composite pulse satisfactory. Hence,
in the following section we will go a step further and
calculate the second order average Hamiltonian for the
90,180,90, composite pulse in the presence of an rf
amplitude error.

4.1.5 | Second order average Hamiltonian
and propagator

Since the interactions frame Hamiltonian in Equation 80 is
piecewise time-independent we can calculate the second
order average Hamiltonian as outlined in Section 3.1, ie,
we solely have to include commutators of the interaction
frame Hamiltonian during pairwise different blocks ((D, @
or @) of the composite pulse, see Equation 45:

13 t
~2) 1 LR B
H;y” =— [ dr | df'|H(¢),H(¢
§ =i [ & [ a1,
fo fo

1 o~ [ o~
_{[H?»Hz?]ml + [Hy  Hy | 1311 + [H?,H?]rm}
————

T 2iT
T (~0 = -
= {1 A+ () 7
16i
T
= = o{lL 1] - (111}
2
= _E P Ixa
4 @y

(83)

where we have made extensive use of the definitions and
relationships of time intervals during the composite pulse
given in Equation 71 and above. Furthermore, we used the
commutator relationship [/,, I.] =il,. To gain further
insight into the significance of the second order average
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Hamiltonian in the rf interaction frame, we collect the first
and second order results, Equations 81 and 83, respec-
tively, to arrive at the total propagator U(ts, ty) over the
whole composite pulse in second order average Hamilto-
nian theory:

Ul(ts, ty) = Ua(t3,10)Us(t3, 10)
= Ru(n) exp{—i(Ay’ + HYT}

— Ry() a(Lon -T2
= Ky(T)expq —1 Emez—za X (84)

1
= R(m) exp{—i(rcdZ - §ﬂ2621x> }

= Ry (m) exp{—iPes(I; cos O — I, sin 0)},

where the exponential operator in the last line represents a
rotation about an axis in the —xz-plane that encloses the
angle 0 = arctan (ne/2) with the z-axis by the flip angle
Besr = mer/1 + 122 /4. We can perform a consistency
check of this result comparing it with the first order aver-
age Hamiltonian propagator: If me is sufficiently small, we
get Pegr = e, cos Perr &~ 1 and sin Begr =~ 0, consequently
arriving back at the result in Equation 82.

Now we can revisit the results shown in the right
panel (D-F) of Figure 9 for an amplitude error of
€ = —15%. In Section 4.1.4 we saw that the propagator
for the 90,180,90, composite pulse in first order average
Hamiltonian theory was not able to correctly generate
the final position of the magnetization vector starting
from z-magnetization, (py = 1)) as can be seen in the
third column of the first row (D). However, the last col-
umn shows the trajectory under the propagator in second
order average Hamiltonian theory starting from z-magne-
tization. It is evident that the final position reached by
the magnetization vector resembles very well the final
position after the exact trajectory during the 90,180,90,
composite pulse.

The second row (E) in the right panel of Figure 9
shows the trajectories of x-magnetization. A single 180,
pulse even with an amplitude error has no influence, hence
the starting and finishing magnetization vectors are identi-
cal, as shown in the left column. The exact trajectory of x-
magnetization during the 90,180,90, composite pulse is
depicted in the second columns, it finishes with the magne-
tization vector lying in the xy-plane enclosing an angle of
about —me = 27° with the x-axis. We note that this specific
result can already very well be predicted by employing the
propagator in first average Hamiltonian theory as is shown
in the third column. Hence, the trajectory using second
order average Hamiltonian theory, shown in the right col-
umn, is almost indistinguishable from the one using first
order theory.

The last row (C) in the left panel of Figure 9 shows the
different trajectories of y-magnetization. Due to the larger
amplitude error, a single 180, pulse fails clearly to invert
y-magnetization, leading to a final magnetization vector
well above the —y-axis. The exact trajectory of y-magneti-
zation under the 90,180,90, composite pulse leads the
magnetization vector to its final position in the xy-plane,
enclosing a small angle with the —y-axis, as can be seen in
the second column. Interestingly, in first order average
Hamiltonian theory the final magnetization vector encloses
a larger angle with the —y-axis (third column), not in
agreement with the result of the exact trajectory. However,
the propagator in second order average Hamiltonian theory,
leads to a final position that is in agreement with the result
of the exact trajectory.

Concluding this section, we could show that for a larger
error in the rf amplitude of ¢ = —15% the propagator in
second order average Hamiltonian theory was sufficient to
reproduce satisfactory the final magnetization vectors com-
pared to the exact propagation.

4.2 | The composite pulse 90,270,90,

In the previous section we have used average Hamiltonian
theory to show that the 90,180,90, composite pulse is
compensated with respect to rf amplitude errors if
employed as an inversion pulse of longitudinal magnetiza-
tion. However, an important application of average Hamil-
tonian theory is not only to understand existing pulse
sequences, but also to design pulse sequences with certain
desired properties. In this section we want to demonstrate
how to design a simple composite pulse that is compensated
with respects to the rf frequency offset using first order
average Hamiltonian theory. We will start with a slight modi-
fication of the previous 90,180,90, pulse that allows a single
degree of freedom to be optimized for the targeted compen-
sation property: 90,,90,, where f is the flip angle parame-
ter, which should be optimized such that the resulting
composite pulse is compensated in first order average Hamil-
tonian theory with respect to rf frequency offsets.

Figure 8B shows the timings of the 90,3,90, composite
pulse. The durations of the individual pulses (D, @), and
@ are given by 1, =t; — 1y, Th=th — 1}, T3 =13 — by,
respectively. The total duration is given by
T=1t —t =1 + 1, + 13, and the following relationships
are satisfied:

T
OputTp = Op T3 = )

OnuT2 = B (85)
Ol = T+ B,

where o, is the ideal nutation frequency of the rf field
during the composite pulse.
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4.2.1 | Hamiltonian

If we consider again a single /-spin system, its Hamiltonian
at time point ¢ in the presence of the Zeeman interaction
and the interaction with the rf field during the composite
pulse, including an rf frequency offset, in the high-field
approximation and in the rotating reference frame is given
by, according to Equation 21:

H(t) = ony(Iycos (1) + Iy sin (1)) + AL

— omRGOLRCOW) + AL, 6
Hy(r) Hp(t)

where A is the rf resonance frequency offset, and ¢(7) is
the rf phase at time point ¢ during the composite pulse.
In the last line we have split the Hamiltonian into two
parts, H,(f) is the time-dependent Hamiltonian of the
interaction with the ideal rf field and Hg(¢r) is the time-
independent Hamiltonian of the rf resonance offset. If the
ratio A/, is relatively small, it is helpful to transform
H(?), and hence Hp(f), into the interaction frame of H,(7)
as discussed in Section 3.2. Since H,(¢f) is Hamiltonian
of the interaction with the on-resonance rf field, the
interaction frame in this case is also referred to as the
“toggling frame” as discussed in Section 3.2. In order to
achieve the transformation, in a first step we list Hu(?)
and Hy(?) during the different pulse sequence blocks (D,

® and Q:

~Jondy for fp<t<tiorn<t<t3
Hy(r) = { oy for 1 <t<t, (87)
and
Hp(t) = AL for (©n<t<n (88)

4.2.2 | Rf propagator

In a second step we need to calculate the propagator Ux(t,
to) for the Hamiltonian that solves the Schrodinger equa-
tion (Equation 50) of the Hamiltonian H4(f). The propaga-
tor during the three time blocks (D, @ and @ is given
by:

Ry (0nu(t — 1)) for th<t<t

Ua(t,10) = { Re(0nu(t — 11))Ry () for n<t<t
Ry(0nui(t — 12))R:(B)R, (%) for n<r<m.
(89)

Note again how the propagators accumulate from right
to left in the second and third line, see also Equation 4. As
in Section 4.1.2 we use the relationships PBg(¢)

Onue(t = 10), Po(f) = Onu(t — 1) and Pg(t) = Onu(r — 1)
to simplify the propagator expression:

for to<t<t

Ry(Bo (1))
Ua(t,10) = § Re(Ba(1))R, S%) forn <1<, (90)
R, ) +3)R.(B) for & <t <1,

where we used in the last line the transformation

0 () =1 () (-5 () - o
Oon

In order to transform the Hamiltonian into the interac-
tion frame we also need to calculate the adjoint of the rf
propagator:
for 1o <t<t

for 1 <t<t,
for t, <t <t.

92)

R,
Ul(t,10) = ﬁy(— DR (—Ba (1))

4.2.3 | Interaction frame Hamiltonian

We can now employ the 1f propagator Ua(t, fy) calculated
in the previous section to transform the Hamiltonian into
the interaction frame of H(f) (“toggling frame”) according
to Equation 56:

Ry(=Bo ())ALR,(Bo (1)) for 1o <1<t

Ry(-3)R (—B®())

Hg(r) = ¢ x ALR(Bo(t))Ry(E) for 1 <t<t
R.(~B)R, (- B@(t)—%)
x ALR,(Bo(t) +3)R.(B) for 1 <1<us.

93)

The first rotations around the y- and x-axis in the first
and second line, respectively, of Equation 93 are relatively
straightforward to execute, whereas in the case of the last
row we use the relationships cos(+x) = —sinx and
sin (g + x) = cos x after the y-rotation:

A{IL cos Bp(t) — LsinBp()}  for 1 <t<p
) AR,(~3) {Zzcos o (1)
Hy(1) = + I,sinBg(1)}R,(3) for 1 <t<t
AR (—PB){—L sin B (1)
— I, cos Be(t) }R;(B) for 5 <t<mn.

(94)

Finally, the remaining rotations in the second and last
line are carried out:

A{I; cos By (1) — Lesin By (1) }

() = A{—IXC.OSB@(I)+[ysin[3®(t)} for 1 <t<t
A{~Lsino (1)
+(Iysin B — I, cos B) cos B (1)}

for (n<t<n

for 1, <t<t.
95)
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This result is more complicated than the one we got in
Section 4.1.3, here the resulting interaction frame Hamilto-
nian is not piecewise time-independent during the different
pulse blocks.

4.2.4 | First order average Hamiltonian

With the help of the interaction frame Hamiltonian in
Equation 95, we can now calculate the first order average
Hamiltonian according to Equation 30:

3
g _ 1 ”
H,’ =— [ dt H(t
§ =g [

fo

5 i b
1 - - -
“TTp {0/ dBoHy (Bo) +/dB®H§;@(B®) +/dB@H§?(B@) }7

0 0

Jo Jo Jo
(96)

where we have substituted the integration over the time
variable ¢ with the integration over the flip angles Bg, Bo
and Bg during the three blocks (D, @, and @), respec-
tively. Hence, the normalizing by the total duration T is
replaced by the normalization by the sum of the flip angles
m + B of the composite pulse. In addition, we have used
the shorthand notations H?(ﬁ@), ﬁ?(ﬁ@) and ﬁ?(ﬁ@)
for the interaction frame Hamiltonians during the different
blocks in Equation 95. The three integrals [, [ and [g)
can be solved separately:

I
2

Jo = A|Lsin Bg + I cos B@J

L 0
=AM, - I}

B
= A|—Isin By — I, cos
f@ B@ y B@] o 97)

- A{-—IxsianLly(l —cosP)}

(ST

J@ = A|L cos Bg + (Iysin B — I, cos B) sin B©]

L 0
= A{—IZ +I,sin B — I, cos B},

which finally leads to the first order average Hamiltonian

Hé” :ﬁﬁ{flx(l +sinB+cosP) +1,(1 fcosB+sinB)}.

(98)

The goal of this section is to choose the flip angle B of
pulse @ such that the resulting composite pulse is compen-
sated for rf frequency offsets in first order average Hamil-
tonian theory. This would imply we would like to achieve
that H, él) is zero for our choice of B:

Wl LEY 17 of 19

sinf=-—1
A cosB=0
99)

1+sinB+cosp=0

(D) :
Hy' =0 if
5 ! A 1—cosB+sinf=0

The simple equation system in the right column of
Equation 99 is solved straightforwardly by 3m/2 plus any
multiple of 2n. We can summarize this condition in the fol-
lowing equation:

_ 3
Hz(al) =0 if B= 715 + Z27n, where Z is any integer
(100)

Hence, for example the 90,270,90, composite pulse
would be an inversion pulse that is compensated with
respect to rf frequency offsets. However, we need to care-
fully check whether the 90,270,990, composite pulse actu-
ally is equivalent to a 180, pulse under ideal circumstances
(no rf offset). As it is proven in Appendix A this is not the
case, rather it is equivalent to a 180_45 pulse. However, as
a result, the 90,352704590,35 composite pulse is indeed
equivalent to a 180, pulse.

In Figure 10 the operation of the 90;352704590;35 compos-
ite pulse is demonstrated by following the trajectories of z-, x-,
and y-magnetization during the composite pulse in the pres-
ence of a relative rf frequency offset of A/w,, = 10%. The tra-
jectories shown in first row (A) start with the density operator
po = I, corresponding to z-magnetization. The left panel
shows that a single 180, pulse cannot perfectly invert the z-
magnetization vector due to rf offset. The exact trajectory of
the magnetization vector during the 9035270459035 pulse
shown in the middle panel is very interesting and leads to a
completely inverted z-magnetization vector. The propagator of
the 90,352704590,35 composite pulse corresponds to a R,(m)
rotation operator in first order average Hamiltonian theory,
hence z-magnetization is perfectly inverted in first order aver-
age Hamiltonian theory as depicted in the right panel.

The second row (B) in Figure 10 shows the trajectories of
x-magnetization. The presence of the rf frequency offset
causes the single 180, pulse to lift the final position of the x-
magnetization vector slightly above the x-axis, shown on the
left. The exact trajectory of the x-magnetization during the
9035270459035 composite pulse is quite complicated, but
nevertheless leads right back onto the x-axis, as expected for
a pulse compensated for rf frequency offsets, as shown in the
middle panel. Since in first order average Hamiltonian the-
ory, the 90,352704590,35 composite pulse is identical to a
180, pulse, even in the presence of rf frequency offsets, the
X-magnetization vector remains in its position.

Finally, the last row (C) in Figure 10 depicts the differ-
ent trajectories of a starting /, density operator, correspond-
ing to y-magnetization. As shown in the left panel, in spite
of the rf offset the trajectory during the single 180, pulse
follows closely one without rf offset. As expected, the
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FIGURE 10 Trajectories of z-, x-, and y-magnetization vectors
during a single 180, pulse and during the 90,352704590;35 composite
pulse in the presence of a relative rf frequency offset of A/w,,, = 10%.
Details are discussed in the text

9035270459035 composite pulse inverts perfectly the y-
magnetization vector in the presence of a small rf offset, as
does the propagator R,(m) of the composite pulse in first
order average Hamiltonian theory, shown in the middle and
right panels, respectively.

5 | CONCLUDING REMARKS

In this first part of our introduction to average Hamiltonian
theory, our goal was to introduce the basics of this topic in a
comprehensive but rigorous fashion. The two composite
pulses were chosen as examples to familiarize the reader with
applying the concept of the interaction frame and the Magnus
expansion in practice. The reader is encouraged to consult
Edén’s recent educational papers in this journal on the Zeeman

truncation in NMR for another important example of applying
average Hamiltonian theory in the interaction frame. %%
Finally, part II of this introduction to average Hamiltonian the-
ory will cover more advanced examples, such as dipolar
recoupling and homonuclear decoupling in solid-state NMR,
of the application of average Hamiltonian theory in NMR.
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In the following, we present the proof that the 90,270,90, composite pulse is equivalent to a 180_45 pulse:
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